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1. Introduction and Summary

Economists have used the traditional information theory measures

such as "entropy" and "redundancy" to measure the extent to which busi-

ness is concentrated in the control of giant firms. Hart (1971) has

compared these measures with the classical statistical measures of dis-

persion, and other measures of business concentration derived from the

"Lorenz curve." More recently, the sample entropy has been used to

develop a test of goodness of fit for normality (Vasicek, 1976). The

redundancy has also been used as a measure for ordering any two distri-

butions within the class of "star ordered"* distributions (Chandra and

Singpurwalla, 1980). This ordering is useful for discussing the unbias-

edness of certain goodness of fit tests; see, for example, Sections 3.1

and 3.2.

In this paper, we consider an estimator of the redundancy, and

obtain its sampling properties. We show that the estimator is almost

*Let FI and F2 be two continuous distributions on [0,-)

then F1 is said to be star (anti-star) ordered with respect to F2

if F2 1 F(x)/x is nondecreasing (nonincreasing) in x for Ox< FII (1 )
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sure consistent, and is asymptotically normal. We use these properties

to propose a scale-free test for exponentiality based on the sample re-

dundancy, and obtain the asymptotic relative efficiency of this test

compared to tests based on the maximum likelihood estimates. Percentage

points of the test statistic for finite samples are obtained via a Monte

Carlo experiment. The power of this test against various alternatives

is compared with a recently proposed test for exponentiality based on

the Gini index (or equivalently, the total time on test statistic) using

a Monte Carlo experiment.

Our conclusion is that a test for exponentiality based on the

sample redundancy is unbiased in the sense of Lehman and Scheff6 [cf.

Ferguson (1967, p. 224)], and that it performs as well as a test for ex-

ponentiality ba3ed on the Gini index for the gamma, the Weibull, the

uniform, and the Pareto alternatives. These distributions are either

star or anti-star ordered with respect to the exponential distribution.

The same conclusion also holds for the lognormal alternative, when the

parameters of this distribution are so chosen that it is either star or

anti-star ordered with respect to the exponential distribution. When

the lognormal alternative fails to be either of the above, then neither

the test based on the sample redundancy nor the test based on the Gini

index should be used; this is because it is not possible to claim un-

biasedness of these tests. However, should we decide to go ahead and

use these tests, then we find that the test based on redundancy appears

to have a slight advantage over that based on the Gini index, with re-

spect to power: both the tests have low power. Finally, the asymptotic

relative efficiency of the test based on redundancy for the gamma and

the Weibull alternatives is also comparable to that based on the Gini

index.

We have no compelling reason, other than ease of computation and

the slight advantage of power, to recommend a test for exponentiality

based on redundancy over other available tests. The main purpose of

this paper, then, is to point out the possibility of using the sample

redundancy as another means for testing for exponentiality, and to

-2-
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describe the circumstances under which the tests based on the redundancy

and the Gini index should not be used.

2. Redundancy and Its Estimation

For a nonnegative random variable X with a distribution func-

tion F and probability density function f , the redundancy R F is

defined [see, for example, Thiel (1967, p. 96)) as

RF= E(X log (2.1)

where p = E(X) is assumed to be finite.

Let Xi,...,X n be a random sample from F , and let Y
1

X /I Xi , i-l,...,n . The s8nple entropy of Y ' .... Yn is defined

by Hart (1971) as

n
H(Y) - Yi log Y " (2.2)

i

Note that H(Y) attains its maximum value log n when Y, = 1/n , for

i-i,....n . Vaslcek (1976) proposes a test for normality based on the

sample entropy of f

The difference between the sample entropy H(Y) and its maximum

value log n is called the sample redundancy, R n Thus,n

R n log n - H(Y)
n

n n
I I Yi log(nYi) , since I Yi 1
i

Some further simplifications lead us to write

n
Rn I Xi log Xi  logX , (2.3)

nX i

where X - Xi/n

-3-
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In Theorem 2.1 below, we shall show that R as. and that

R is asymptotically normally distributed. Thus R is an almost suren n

consistent estimator of RF

2.1 Sampling Properties of Rn

In what follows the following abbreviations will be used.

If {X } is a sequence of random variables, and if {b } is anyn n

other sequence, then the notation "Xn = Op(b n)" denotes the fact that

(X n/b n 0 , where " ' denotes convergence in probability. The nota-

n n
tion D N(, denotes convergence in distribution to a normally

2
distributed random variable with mean p and variance a

Let E(XlogX) = a , where a is finite, and let E(XlogX)2 < 0;

also, let a 2(F) = (1/p2 )E(XlogX _ 2 X _ X + i) 2 . Then as n -* 00

Theorem 2.1: A? (R-RF) - N(Oa2(F))

Proof: We shall first show that R as. . Write S n

in. XilogX 1 ; then, using the strong law of large numbers, we can

n ie
write

S
R --- +log " - log -

= s n (1+ k)l l - log I+II--)

(S S- a +a) 1 + )1(IL..

- (Sn)+a- (x-J) [-1 - ij-
- ) a 0

-4-
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I Vn
n P (Xi lg Xi  X. - X + +)

i=1 i1 +

where

z.= If(xlogX e ~ x+ )

The result follows since ES = 0 , and X. log X. are independent and
fl 1 1

identically distributed. To prove the statement of the theorem, we note

that the Zi's are independent and identically distributed with

EZ. = 0
1

and

EZ 2 a 2(F)
i

and invoke the central limit theorem. //

3. A Test for Exponentiality Based on Rn

Since R is scale-free, we can use the result of Theorem 2.1 to

obtain a test for exponentiality by taking the underlying distribution,

say G , to be a unit exponential; that is, G(x) = l-e- x . Using the

fact that under G , E(XlogX) = F (2) - .4227 , and that E(X2 logX) =

1 (3) = 1.8455 , we can show that 2(G) = E(XlogX - XEXlogX - X+l) =

.2898664 ; Pl(.) is the digamma function. Thus, when G(x) = l-e- x

V4n(Rn-RG) N(O,.2898664)

and so the above result can be used to test for exponentiality when n

is large, using standard procedures for testing hypotheses.

The exact distribution of R when the underlying distributionn

is G is not known. Consequently, the quantiles of R , for i < n <
n 5 -

~-5-
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30 , are obtained through a Monte Carlo simulation involving 10,000 ran-

dom samples each of size n , generated from G using the subroutine

GGAMR of the International Mathematical and Statistical Library program

package. These quantiles are given in Table 3.1.

3.1 Power of the Test for Exponentiality
Based on R

n

To study the power of a test for exponentiality based on R
n

against several alternatives, and to compare the performance of this

test versus other competing scale-free tests, we have to again resort to

a Monte Carlo simulation. For convenience, we choose n=20 so that our

test statistic becomes R20 , and we take 1000 replications of the test.

The significance level is taken to be .05, and the alternatives consid-

ered are the Weibull, the uniform, the Pareto, the gamma, and the log-

normal. Depending upon the nature of the alternative, either the one-

sided or both the one-sided and the two-sided tests are studied. One-

sided tests are used whenever the alternative F is star (anti-star)

ordered with respect to the exponential distribution G , because then,

RF <(>) RG [Chandra and Singpurwalla (1980)]. Also, whenever

R <(>) R , the test based on R is unbiased against the alternative

F , in the sense of Lehman and Sheff6. The results of the power studies

are summarized in column 2 of Table 3.2. In computing the entries in

column 2, the quantiles of R20 given in Table 3.1 are used.

3.2 Comparison with Other Tests

Of the several goodness of fit tests for the exponential distri-

bution which are available in the literature (Stephens, 1978), the one

which appears to be the most recent and which enjoys the advantages of

good power, good asymptotic relative efficiency, robustness to measure-

ment error, etc., is the one based on the Gini statistic G (Gail andn

Gastwirth, 1978), where

-6-
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TABLE 3.2

POWER COMPARTSONS FOR A TEST FOR EXPONENTIALITY BASED ON THE
REDUNDANCY AND THE GINI STATISTIC (based on 1.000 samples

of size n=20, using a significance level of eO.05)

Alternative 1-Sided 2-Sided ]-Sided 2-Sided
Test Test Test Test

Weibull shape = 0.8 0.346 t 0.336 t

Weibull shape = 1.5 0.643 t 0.643 t

Uniform on (0,2) 0.826 t 0.829 t

Pareto DF I - 1/4x 2  0.830 t 0.835 t

Gamma shape 2.0 0.631 1 0.6?2 t

Lognormal* 0=0.6, P=1 0.873 t 0.873 t

Lognormal* 0=1.0, i=1 0.144 0.154 0.117 0.126

Lognormal* 0=1.4, p=1 0.629 + 0.620 t

*f(x) = 1 exp(_(logx-P)2 /G 2  
, <x<

tA two-sided test is inappropriate for this case.

n-i
Si ) (i+l) (i

G = =1
n n

(n-i) X
i=1

X X are the order statistics of X1 .... X(1) ~ n n

Thus it appears that it is appropriate for us to compare the test

for exponentiality based on R with the one based on C with respectn nl

to both the power and the asymptotic relative efficiency. Another rea-

son for choosing G as a basis for comparison is that Chandra and
n

Singpurwalla (1980) have shown that a test for exponentiality based on

G Is identical to the one based on the "total time on test" of Barlow
n

-9-
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and Doksum (1972). Since this latter test is known to be asymptotically

minimax against a large class of alternatives defined by the Kolmogorov

distance, so is the test based on G
n

In column 3 of Table 3.2 we give the powers of the tests for ex-

ponentiality based on G20 against the several alternatives mentioned

before. The entries in column 3 of Table 3.2 have been taken from Table

1 of Gail and Gastwirth (1978) for all the alternatives considered ex-

cept the lognormal--this alternative was not considered by the above

referenced authors. The powers of G20 against the lognormal alter-

natives were obtained by us with a Monte Carlo simulation of 1000

replications.

From a ccmparison of the entries in columns 2 and 3 of Table 3.2,
we see that the two tests for exponentiality based on R20 or G20

perform equally well or poorly, depending on the alternative considered.

For the lognormal alternative with a = 1 and P = I , the test based

on R20 appears to have a slight edge over the one based on G20

Both these tests have low power.

A reason why the tests for exponentiality based on the sample

redundancy and the Gini index have low power for the lognormal alterna-

tive with p = 1 and a = 1 , is that this distribution is neither

star nor anti-star ordered with respect to the exponential, whereas the

other alternatives are. Furthermore, Chandra and Singpurwalla (1980)

also show that when a distribution F is star (anti-star) ordered with

respect to the exponential distribution G , then GF , the Gini index

of F , is less (greater) than GG , the Gini index of 0 . Thus, it is

not possible to claim unbiasedness of either R20 or G20 for the log-

normal alternative ini question, and our conclusion is that neither the

test based on the Gini index nor the test based on the redundancy should

be used under the circumstances described above.

S10
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Ri ( 0) - loO , where i(x) = d log '(x)/dx . Hence F.

(1)(2)- 1 - -0.3550668 , and from (4.2) we get the A.R.E. as 0.674.

For the Weibu11 alternatives F(x,B) fi (x/X)0-'exp[-(x/X) )1 ]

the variance of An is V - 0.60793 , again independent of A , and

R I -(1 "1-4,+ Hec M 0(2) - V)W (2) + !P (2)F(a) / + -og(1+ 8 ) Hence F(I)

-0.6449332 , and from (4.2) we get the A.R.E. as 0.872.

- 12 -
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